
MATHEMATICS OF COMPUTATION
VOLUME 39, NUMBER 160
OCTOBER 1982, PAGES 671-680

Computing in Permutation and Matrix Groups
II: Backtrack Algorithm*

By Gregory Butler

Abstract. This is the second paper in a series which discusses computation in permutation and
matrix groups of very large order. The essential aspects of a backtrack algorithm which
searches these groups are presented. We then uniformly describe algorithms for computing
centralizers, intersections, and set stabilizers, as well as an algorithm which determines
whether two elements are conjugate.

1. Introduction. Only since the pioneering work of C. C. Sims [13], [14] in
computing intersections, set stabilizers, and centralizers in permutation groups has
the backtrack algorithm been applied to group-theoretic problems. The computation
of the automorphism group of a graph [11], Hadamard matrix [9], code [1.0], or
group [12] as a group of permutations uses the backtrack algorithm, as does the
computation of normalizers in permutation groups [2]. Here we present in a uniform
manner a backtrack search of a permutation or matrix group, thus giving a neat
description of the algorithms of Sims and their generalizations to matrix groups. An
algorithm for testing conjugacy of elements, which is derived from the centralizer
algorithm, is also given.

The computation of Sylow subgroups will be described elsewhere [4]. Work is in
progress on the computation of the conjugacy classes of elements using the algo-
rithms for testing conjugacy and for computing centralizers.

We assume the reader is familiar with the first paper [3] in the series, whose
notation we will follow. If T = [yl, . .,y,] is a sequence of points, then T U [y] will
denote the sequence [yl...y r y]. Throughout, G will be a permutation or matrix
group acting faithfully on a finite set X, and B = [xI, x2,. . . ,Xk] will be a base for G
relative to which a strong generating set of G is known. The key to the efficiency of
the backtrack algorithms is the appropriate choice of a base. Efficient algorithms for
changing from one base to another are known (Sims [14], Butler [1]), so we may
assume that B is appropriate to the problem at hand.

We first describe in Section 2 a backtrack search for an element of G with a given
property P. This is extended in Section 3, after presenting the necessary theory, to an
algorithm which constructs a strong generating set (relative to B) of a subgroup of

Received May 12, 1980; revised March 24, 1982.
1980 Mathematics Subject Classification. Primary 20-04, 20G40, 20E25.
Key words and phrases. Backtrack algorithm, permutation group, matrix group.
* This work forms part of the author's Ph. D. thesis at the University of Sydney under Dr. J. J. Cannon.

The work was partially supported by the Australian Research Grants Committee.

'31982 American Mathematical Society
0025-571 8/82/0000-0373/$03.00

671

672 GREGORY BUTLER

G. The implementation is discussed in Section 4, and the details for each specific
type of subgroup are presented in Section 5. The conclusion in Section 6 is followed
by tabulated performance results.

Tables I-V refer to results on a CDC Cyber 72 using our implementations which
form part of the group theory system CAYLEY [5]. Any symbols in the column
headings of the tables are explained in the relevant part of Section 5. For an
explanation of the names of the groups see [8]. The group ?G2(4) is a subgroup of
Sp(6, 4), which we believe to be G2(4). The results in Table V are averages for testing
conjugacy of permutations with the same cycle structure, in a situation where no
change of base was necessary.

2. Backtrack Search. In this section we consider the problem of finding an element
g of G with a given property P. We begin with some definitions. A sequence
T [yI,...,yj, 0 < r < k, of distinct points is called a partial (base) image. If
r = k, then T is complete. For any partial image T and subgroup H of G, define

H(T) = {g E HI [xl,.. .,x]g T}

and, if T is incomplete, define

XH(T) = {y E XI H(T U [y]) # 0).

Similarly we define P(T) {g C G(T) j g has property P), and Xp(T) = {y e X
P(T U [y]) 7# 0).

The backtrack algorithm runs through the partial images T using any knowledge
of the set Xp(T) to prune the search tree. Our knowledge of Xp(T) comes from the
following result, and from relating the choice of base to the property P.

PROPOSITION 1. Let T= [Yli... ,y] be an incomplete partial image, and let
g C G(T). Then

(i) XG(T) = (Xr+QI) g and

(ii) Xp(T) C- XG(T).

The proof is easy and will be omitted.
The aim in developing an efficient backtrack algorithm is to be able to quickly

determine a 'good' approximation, call it Xp(T), from T and P with Xp(T) C; Xp(T).
We can always assume that Xp(T) C XG(T). Another feature which prominently
affects the efficiency of the backtrack algorithm is the 'first point in the orbit'
condition, as explained by the following result.

PROPOSITION 2. Suppose K is a subgroup of G and that, for each g in G, either all or
no elements of gK have property P. Let T = [Yi,. .. .,Yr] be an incomplete partial image,
and lety C X. Then the set P(T U [y]) 0 if and only if, for all h C Kyl- Y the set
P(T U [yh]) = 0.

Proof. It follows from the hypothesis that g C P(T U [y]) if and only if gh C

P(T U [yh]). D
One can always take K to be the trivial subgroup, but in all cases of interest-

especially in Section 3-a nontrivial subgroup K is known. We totally order X so
that xI,... ,xk are the first k points. There is an induced (lexicographical) order on
each of G, BG, and the set of partial images. Proposition 2 simply says that only the

COMPUTING IN PERMUTATION AND MATRIX GROUPS. II 673

first point of each KYl ,V-orbit has to be considered when extending T. In the cases
discussed here, this restriction is used when K= Kyl y otherwise the orbits of a
quickly-computed approximation to Kyl y are used, in order to avoid a time-
consuming change of base for K from B to IY. II. .Yr, . . .]

We present the general algorithm for finding an element g with property P and
then discuss the case of testing conjugacy of elements.

ALGORITHM BKTKS
BKTKS 1: [initialize with null sequence]

r --0, T --[].
BKTKS 2: [next level down]

r -- r + 1.
if r > k then go to (5).

Yr --Xp(T)-

BKTKS 3: [next partial image]
if Yr = 0 then go to (4).

Yr- first point of Yr, T - [yl...Yr].

go to (2).
BKTKS 4: [backtrack]

r<-r- 1.
if r = 0 then stop (no element with property P exists).
Yr --Yr \ yrls 1, r- IlT <-- yl,..yr-I]
go to (3).

BKTKS 5: [image is complete]
let g be the unique element of G(T).
if g has property P then stop else go to (4).

In testing conjugacy of g, and g2 in G we search for an element with the property
P: "g conjugates g, to g2'".

In this case K is any subgroup of CG(g2), for example Kg2). The base is chosen to be
compatible (in the sense of [13]) with the action of g, so that xr = Xrg- I as often as
possible. Then, for an incomplete partial image T = [yl, Y2, . .Yr- J] we can take

(XG(T) n
{y,i1}, if xy=rx,L 1,and

y E {y 192>1=IX< otherwise,

since a conjugating element maps cycles of g, to cycles of g2.
This approach restricts the number of complete images considered, particularly

for elements with large cycles. Our experience while using the algorithm as part of a
method to determine the conjugacy classes of a permutation group (cf. Table V)
indicates that using K = CG(g2) instead of K = {identity} often leads to a 30-50%
reduction in time. We found the algorithm to be very efficient.

3. Subgroup Construction. In the case where the elements with property P form a
subgroup H, the previous algorithm can be modified to find generators of H(k), then
generators of H(k- 1), and so on. In this way a strong generating set of H relative to
B is computed. Suppose H(s+ 1) < K < H(s). Then, in searching for generators of
H(s), we clearly have to consider only one element from each right and left coset of

674 GREGORY BUTLER

K. The following result therefore justifies discarding points in steps 2 and 4 of
algorithm BKTK described below.

PROPOSITION 1. (i) (Sims [13]). An element g is the first element of Kg if and only if,
for each i, 1 < i < k, xg s yg for every y in the KX .x _-orbit of xi.

(ii) Let yi = xg for i 1,2,.. ., k. Then g is the first element of gK if and only if, for
each i, 1 < i k, yi is first in the Kyl ,,-orbit of y1.

Proof. The results follow from the one-to-one correspondence of Kg with B1Kg and
of gKwith (Bg)K, and the fact that x1, ... ,Xk are the first points of X.

(i) Suppose there exists an integer i < k and a pointy E KX, _ ,-orbit of xi such
that yg < xg. Let h E K , mapping xi to y. Then x9 = xJ, for j < i, and
Xhg = yg < xg. Hence hg < g, and g is not first in Kg. Conversely, suppose that g is
not first in Kg. Let h E K such that hg < g. If xhg = xg for i = 1,...,k, then
hg = g. Hence, let i be the first integer for which xhg < xg. Then h E K x and,
if y x h, thenyg < xF.

(ii) Suppose there exists i s k and y E KY , ,--orbit of y, such that y < y, Let
h E Kyl y l such thatyh hy. -

=Y, forj < i, and xgh =yh =y <yl
= xg. Hence gh < g, and g is not first in gK. Conversely, suppose that h E K and
gh < g. Let i be the first integer such that Xgh < xg. Then h E KY and y'h < Y.

A corollary of Proposition 1 (ii) is that once a generator g extending K has been
found then no other generator of H(s) mapping x5 to xg is required. Hence the value
of r is set to s + 1 in step BKTK 5 after a generator has been found.

In algorithm BKTK the sequence T= [y1, ... y,Y]; the integer s is the largest
integer for which y, = xl for all i < s; K is the subgroup of H already computed,
H(s+ 1) < K < H(s); and S is a strong generating set of K relative to B. On
termination K = H. If L is a known subgroup of H, then L is used in step BKTK 6
to improve the computation.

ALGORITHM BKTK
BKTK 1: [initialize]

K -{identity}, S-- 0, T -B.
for r = 1, 2,. .. .k, Yr <-XA(x15...

*
sX'-I

s <- k, r <-s + 1.

BKTK 2: [T and its descendants have been considered, so backtrack]
r -- r - 1.
if r < s then go to (6).
Yr --Yr \Y;K.r

-v i,T<-- [y1, ..Yr-
BKTK 3: [consider next yr]

if Yr = 0 then go to (2).

Yr --first point of Yr 5 T --[Y l, .. 5Yr]
BKTK 4: [consider descendants of T]

r - r + 1.
if r > k then go to (5).

Yr Xp(T) \ {y E X I there exists j < r such that xr E XK(J and
Y <yJ}.
go to (3).

COMPUTING IN PERMUTATION AND MATRIX GROUPS. II 675

BKTK 5: [image is complete]
let g be the unique element of G(T).
if g does not have property P then go to (2).
S - S U {g}, K (S), r - s + 1.
go to (2).

BKTK 6: [K = H(S). Construct H(s-)]
s -- s - 1.

if s 0 O then stop.
S - S U {generators of L which fix x1,...,xs_l} .
K -(S).
r - s + 1.
go to (2).

4. Implementation. For a permutation group G the implementation is straightfor-
ward. Subsets of X are represented as bit strings and an element g of G(T) is stored
to facilitate the computation of XG(T). The storage requirements over and above
those necessary to frame the problem are k bit strings for the Y, an additional bit
string for the orbit in step BKTK 2, one element, and the storage requirements of
the group K.

For a matrix group G a different approach is used. The sequence T and the
subsets Yr of X are implicit. The information they contain is interpreted in terms of
coset representatives in the basic transversals of G and explicitly stored as such. The
sequence T of points is replaced by a sequence I [i1,... 5ir] of integers, where

Urlr .r 1r l . . u1, E G(T) and Uj11 is the ijth element of the jth basic transversal

U.. The set Y, is replaced by a subset W, of { 1, 2, ... I U, 11}, where the image of x,
under urlr . . U. runs over Yr as ir runs over Wr. The set Wr is stored as a bit string
relative to { 1, 2,. .., I Ur II} Each of the products uU . U , U,,1,, forj = 1, ... r,
is explicitly stored as an element in order to facilitate the computation of an element
g E G(T) as T varies. The storage requirements are 2k bit strings (one for Wr and
one for workspace at level r), k elements, the storage requirements of K, and a hash
list of vectors for the orbit in step BKTK 2.

The specific algorithms which are based on the backtrack algorithm are imple-
mented by supplying three additional routines for use by the general routine.

(1) A routine to select an appropriate base and to set up any information needed
in the computation of Xp(T).

(2) A routine to compute Xp(T).
(3) A routine to test whether an element of G has property P.
An appropriate base as presented in the theoretical exposition of a specific

algorithm may be quite long. However, it is always possible to implement the
algorithm so that redundant levels of the base are not explicitly stored, thus making
the actual length of the base manageable. Moreover, for permutation groups it is
always possible to conjugate the setting of the problem in the symmetric group so
that the appropriate base is [1, 2, ... , k]. Hence the natural order on X can be used.

The algorithms have been implemented using the dynamic storage manager
STACKHANDLER [6] and they form part of CAYLEY [5].

676 GREGORY BUTLER

5. Specific Cases of the Backtrack Algorithm. It is now a simple matter to describe
a given backtrack algorithm by specifying (a) the property P, (b) the choice of base
B, (c) the choice of L in step BKTK 6 and the approximation to Ky- - l in step
BKTK 2 when r > s (note that r = s implies K = Kyl y ,), (d) Xp(T), and (e) any
features of the implementation.

(5.1) Intersection.
(a) P: "g is in G and M".
(b) G and M have the same base B.
(c) L = {identity} and Ks E Sj s fixes yl,. . .- -1) is the approximation to

Kyl ,. - .,Yr- I'
(d) Xp(T) = XG(T) n Xm(T).
Our experience indicates that the algorithm is very efficient on average. However,

Hoffman [7] shows it has worst case behavior which is exponential in the degree.
(5.2) Set stabilizer.
(a) P: "g stabilizes {Zi,... Zm} .

(b) B [ZI, Z2,... *Zm, . I *]

(c) L GZI Z2 Z and <s E S I s fixesyl,... y 1) is the approximation to KY, - ,.
(d) Xp(T) = XG(T) n {zl,. . ,Zm}.
(e) As Gz, z < H the backtrack algorithm searches the images of [z,..., Zm]

rather than the images of B. That is, k = m and not the length of the base.
Our experience indicates that the algorithm is slow for large sets with small

stabilizer. In general its application is restricted to the case where m s 6. The
algorithm has not been implemented for matrix groups.

(5.3) Centralizer of an element.
(a) P: "g conjugatesf tof ".
(b) B is compatible with the cycles of f.
(c) L = {identity} and the trivial group is the approximation to K ,
(d)

(T) -f|XG(T) n {Y/L}' if x=x xf1, and

{y E XG(T) y Iy<f)I=I xM<) j}, otherwise.

(e) For permutation groups the set {y E Xi y<f)> x <)>I} for each suitable
value of r, is stored as a bit string throughout the computation. For matrix groups
the size of these sets is prohibitive and they are not stored. If I= [i..... i-11]
g =rJru i r-2i * and x7ir2= {v1, v2,. . . }, then

{ {iv= xrgfg}, if xx = xf,and

b {i l v1 is in a cycle of gfg- of length x<f> } otherwise.

There are further differences. The longest cycles of f are chosen to form the base if G
is a permutation group. If G is a matrix group then the choice of cycles for the base
is made from those cycles which contain a point of the existing base, and preference
is given to cycles of subspaces in an attempt to minimize I . Our experience
indicates that the algorithm is very efficient.

COMPUTING IN PERMUTATION AND MATRIX GROUPS. II 677

(5.4) Centralizer of a subgroup.
(a) P: "g centralizes F ".
(b) B is compatible with the orbits of F. That is, {xl, x2,... ,xi}, {xi+,

xi+2,. .. },. . . are orbits of F.
(c) as in (5.3).
(d)

FXcT) {xT f } if some E F maps x- I to x,
Xp(T) {y E XG(T) I IyFI=IX FI and Iy<f>1= Ix<f> I

L for each generatorf of F), otherwise.

(e) The elements fr are determined at the outset (from the Schreier vector of the
F-orbit) and stored as words in the generators of F. For permutation groups the set
{y E Xl IyFj= xFI and Iy<fl=l x<f> I for each generatorf of F}, for each suitable
value of r, is stored as a bit string throughout the computation. For matrix groups
the first condition IyF =F XFI is not used (as orbits are relatively expensive to
compute) and the sets are determined as in (5.3). The actual choice of the base is
analogous to (5.3). Our experience indicates that the algorithm is very efficient.

6. Conclusion. The performance of the implementations of the specific algorithms
is given in the appendix. There are two factors which particularly affect the
efficiency. One is how closely Xp(T) approximates Xp(T), and the other is the
length of the K-orbits. Because of the latter, computing a group H of large order
tends to be faster than computing a group of small order.

Although we have assumed that the matrices are over finite fields, there is in
principle no obstacle to considering finite groups of matrices over other rings.

APPENDIX: Tables of Performance. All times are in CDC Cyber 72 seconds.
All runs used the implementations in CAYLEY

TABLE I

Set stabilizer in permutation groups

I I Cll TOTAL TIME TO G ~~~~~~~IIm H ~ TIME CHANGE BASE

L5(2) 210 32 5 7 31 31 3 28 32 0.98 0.18
M24 2'0 3 3 5 7 11 * 23 24 3 27 33 5 . 7 1.01 0.17

6 24 33 5 1.24 0.17
12 24 3 5 157.76 0.19

L3(13) 25 .32 7. 133 61 183 2 25 3 132 3.65 0.78
3 25 32 3.56 1.00
4 23 * 3 5.69 2.78
5 2 15.98 3.51

20 > 500

678 GREGORY BUTLER

TABLE II

Centralizer of an element in permutation groups

TOTAL TIME TO
G I X I I C I I f I | CG(f)~ I TIME CHANGE BASE

L(3,2) 7 23 .3 . 7 2 23 0.25 0.03
3 3 0.21 0.03

L(3,3) 13 24 .33 *13 2 24 3 0.48 0.10
13 13 0.36 0.10

L(3,4) 21 26 . 32 .5 . 7 2 26 0.80 0.11
7 7 0.52 0.12

L(3,5) 31 25 3 5 3 3 1 2 25 3 5 0.10 0.22
24 23 * 3 0.74 0.25

L(3,7) 57 25 32 73 19 2 25 3 7 1.65 0.38
19 19 1.38 0.32

L(3,8) 73 29 32 72 .73 2 29 7 2.25 0.45
3 32 7 2.53 0.53

L(3,9) 91 27 36 5 -7. 13 2 27 32 5 3.15 0.72
40 24 5 2.23 0.63

L(3, 11) 133 24 3 52. 7 . 113 19 2 24 3 52 11 4.79 0.93
120 23 3 5 2.61 0.78

L(3, 13) 183 25 32 7 -133 . 61 2 25 *3 7 13 6.13 1.20
61 61 4.14 1.17

H - S 100 29 32 53 7 11 7 7 6.73 2.48
2 29 3 5 5.63 1.38

G(2,4) 416 212 33 52 7 13 3 26 33. 5 .7 14.44 2.62
6 22 - 3 30.67 4.53
2 28 3 5 21.43 2.71

2F4(2) 1755 2'1. 33 * 52 . 13 2 2'1. 3 100.63 15.18
8 24 262.33 3.14

COMPUTING IN PERMUTATION AND MATRIX GROUPS. II 679

TABLE III
Centralizer of an element in matrix groups

TOTAL TIME TO
G dim V I fieldi1 IGC I Id ll I CG(f) I TIME CHANGE BASE

SL(3,2) 3 2 23. 3.7 2 23 0.76 0.38
3 3 0.39 0.08

SL(3,3) 3 3 24 .33 13 2 24 3 1.73 0.96
13 13 1.00 0.63

SL(3,4) 3 4 26 .33 .5. 7 2 26 .3 3.66 1.78
21 3 7 1.50 0.36

SL(3,5) 3 5 2 5 *3 53 31 2 25 3 5 3.90 2.25
24 23 * 3 2.28 1.45

SL(3,7) 3 7 25 - 33 . 73 . 19 2 25 32 7 6.23 3.86
19 3 19 4.08 2.30

SL(3,8) 3 8 29 . 32 72 73 2 29 7 11.12 7.65
3 32. 7 6.06 4.40

SL(3,9) 3 9 27'. 36. 5 . 7 . 13 2 27 32 5 12.05 7.53
40 24- 5 5.79 3.95

SL(3, 11) 3 11 24. 3 . 2. i7 *113 * 19 2 24 - 3 52 . 11 14.67 8.81
120 23 -3 * 5 6.83 4.89

SL(3,13) 3 13 25 * 33 * 7 . 133 . 61 2 25 32. 7 . 13 23.22 14.00
183 3 - 61 12.76 8.41

SL(4,4) 4 4 212 34- 52.- 7 71 2 212.32.5 25.50 17.37
4 26 20.75 14.92

SL(4,5) 4 5 29 - 32 - 56 13 31 2 28 32.52 169.42 31.31
124 22 31 14.11 8.03

SL(5,3) 5 3 29- 310. 5 *112 * 13 2 28 34 13 77.64 57.77
39 2 3 - 13 9.68 6.69

Sp(6,3) 6 3 2'0- 39 - 5 - 17 - 13 12 22. 32 28.51 10.18
3 25 38 48.27 16.72

?G2(4) 6 4 212. 33 * 527 - 13 6 22 .3 58.95 4.89
2 28 3 - 5 85.17 6.94

Sp(6,4) 6 4 218-34-537 .13.17 6 24.3 84.06 31.77
2 2143 . 5 233.38 17.67

680 GREGORY BUTLER

TABLE IV

Centralizer of subgroup in matrix groups

TOTAL TIME TO
G IGI dim V I field I F FI I CG(F) I TIME CHANGE BASE

SL(3,2) 23 3 7 3 2 G 233 . 7 1 0.83 0.39
Sp(4,4) 28 32 52 17 4 4 3 2 3 22 3 5 3.68 0.93

4 23 3 22 5.84 1.67
5 23 3 5 1 1.58 0.07

2 X > 4 24 3 22 2.78 0.05
6 24 32 5 1 1.12 0.71

TABLE V

Conjugacy of elements in permutation groups

G G X TIME

M1O 24 32 5 10 0.15
M,, 1 224.32.5.11 11 0.25
- 29 34 12 0.31
- 2'? 16 0.38

M22 27 32 5 7. 11 22 0.36
M24 2'0 33 5 7 11 23 24 0.80
Sz(8) 26 .5 7. 13 65 0.65

Department of Mathematics
McGill University
Montreal, Quebec, Canada H3A 2K6

Department of Computer Science
Concordia University
Montreal, Quebec, Canada H3G 1 M8

1. GREGORY BUTLER, Computational Approaches to Certain Problems in the Theory of Finite Groups,
Ph. D. Thesis, University of Sydney, 1979.

2. GREGORY BUTLER, " Computing normalizers in permutation groups," J. Algorithms. (To appear.)
3. GREGORY BUTLER & JOHN J. CANNON, "Computing in permutation and matrix groups. I: Normal

closure, commutator subgroup, series," Math. Comp., v.39, 1982, pp.
4. GREGORY BUTLER & JOHN J. CANNON, "Computing in permutation and matrix groups. III: Sylow

subgroups." (Manuscript.)
5. JOHN J. CANNON, "Software tools for group theory," Proc. Sympos. Pure Math., vol. 37, Amer.

Math. Soc., Providence, R. I., 1980, pp. 495-502.
6. JOHN J. CANNON, ROBYN GALLAGHER & KIM McALLISTER, "STACKHANDLER: A language

extension for low level set processing," Programming and Implementation Manual, TR 5, Computer-Aided
Mathematics Project, Department of Pure Mathematics, University of Sydney, 1974.

7. CHRISTOPH M. HOFFMAN, "On the complexity of intersecting permutation groups and its relation-
ship with graph isomorphism." (Manuscript.)

8. JAMEs F. HURLEY & ARUNAS RUDVALIS, "Finite simple groups," Amer. Math. Monthly, v. 84, 1977,
pp. 693-714.

9. JEFFREY S. LEON, "An algorithm for computing the automorphism group of a Hadamard matrix," J.
Combin. Theory Ser. A, v. 27, 1979, pp. 289-306.

10. JEFFREY S. LEON, personal communication.
11. BRENDAN D. McKAY, "Computing automorphisms and canonical labelling of graphs," Lecture

Notes in Math., vol. 686, Springer-Verlag, Berlin and New York, 1978, pp. 223-232.
12. HEINRICH ROBERTZ, Eine Methode zur Berechnung der A utomorphismengruppe einer endliche Gruppe,

Diplomarbeit, R. W. T. H. Aachen, 1976.
13. CHARLES C. SIMS, "Determining the conjugacy classes of a permutation group," Computers in

Algebra and Number Theory (Proc. Sympos. on Appl. Math., New York, 1970), G. Birkhoff and M. Hall,
Jr. (eds.), SIAM-AMS Proceedings, vol. 4, Amer. Math. Soc., Providence, R. I., 1971.

14. CHARLES C. SIMS, " Computation with permutation groups," Proc. Second Sympos. on Symbolic and
Algebraic Manipulation (Los Angeles, 1971), S. R. Petrick (ed.), A. C. M., New York, 1971.

	Cit r399_c405:

