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Computing in Permutation and Matrix Groups 
II: Backtrack Algorithm* 

By Gregory Butler 

Abstract. This is the second paper in a series which discusses computation in permutation and 
matrix groups of very large order. The essential aspects of a backtrack algorithm which 
searches these groups are presented. We then uniformly describe algorithms for computing 
centralizers, intersections, and set stabilizers, as well as an algorithm which determines 
whether two elements are conjugate. 

1. Introduction. Only since the pioneering work of C. C. Sims [13], [14] in 
computing intersections, set stabilizers, and centralizers in permutation groups has 
the backtrack algorithm been applied to group-theoretic problems. The computation 
of the automorphism group of a graph [11], Hadamard matrix [9], code [1.0], or 
group [12] as a group of permutations uses the backtrack algorithm, as does the 
computation of normalizers in permutation groups [2]. Here we present in a uniform 
manner a backtrack search of a permutation or matrix group, thus giving a neat 
description of the algorithms of Sims and their generalizations to matrix groups. An 
algorithm for testing conjugacy of elements, which is derived from the centralizer 
algorithm, is also given. 

The computation of Sylow subgroups will be described elsewhere [4]. Work is in 
progress on the computation of the conjugacy classes of elements using the algo- 
rithms for testing conjugacy and for computing centralizers. 

We assume the reader is familiar with the first paper [3] in the series, whose 
notation we will follow. If T = [yl, . .,y,] is a sequence of points, then T U [y] will 
denote the sequence [yl...y r y]. Throughout, G will be a permutation or matrix 
group acting faithfully on a finite set X, and B = [xI, x2,. . . ,Xk] will be a base for G 
relative to which a strong generating set of G is known. The key to the efficiency of 
the backtrack algorithms is the appropriate choice of a base. Efficient algorithms for 
changing from one base to another are known (Sims [14], Butler [1]), so we may 
assume that B is appropriate to the problem at hand. 

We first describe in Section 2 a backtrack search for an element of G with a given 
property P. This is extended in Section 3, after presenting the necessary theory, to an 
algorithm which constructs a strong generating set (relative to B) of a subgroup of 
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G. The implementation is discussed in Section 4, and the details for each specific 
type of subgroup are presented in Section 5. The conclusion in Section 6 is followed 
by tabulated performance results. 

Tables I-V refer to results on a CDC Cyber 72 using our implementations which 
form part of the group theory system CAYLEY [5]. Any symbols in the column 
headings of the tables are explained in the relevant part of Section 5. For an 
explanation of the names of the groups see [8]. The group ?G2(4) is a subgroup of 
Sp(6, 4), which we believe to be G2(4). The results in Table V are averages for testing 
conjugacy of permutations with the same cycle structure, in a situation where no 
change of base was necessary. 

2. Backtrack Search. In this section we consider the problem of finding an element 
g of G with a given property P. We begin with some definitions. A sequence 
T [yI,...,yj, 0 < r < k, of distinct points is called a partial (base) image. If 
r = k, then T is complete. For any partial image T and subgroup H of G, define 

H(T) = {g E HI [xl,.. .,x]g T} 

and, if T is incomplete, define 

XH(T) = {y E XI H(T U [y]) # 0). 

Similarly we define P(T) {g C G(T) j g has property P), and Xp(T) = {y e X 
P(T U [y]) 7# 0 ). 

The backtrack algorithm runs through the partial images T using any knowledge 
of the set Xp(T) to prune the search tree. Our knowledge of Xp(T) comes from the 
following result, and from relating the choice of base to the property P. 

PROPOSITION 1. Let T= [Yli... ,y] be an incomplete partial image, and let 
g C G(T). Then 

(i) XG(T) = (Xr+QI ) g and 

(ii) Xp(T) C- XG(T). 

The proof is easy and will be omitted. 
The aim in developing an efficient backtrack algorithm is to be able to quickly 

determine a 'good' approximation, call it Xp(T), from T and P with Xp(T) C; Xp(T). 
We can always assume that Xp(T) C XG(T). Another feature which prominently 
affects the efficiency of the backtrack algorithm is the 'first point in the orbit' 
condition, as explained by the following result. 

PROPOSITION 2. Suppose K is a subgroup of G and that, for each g in G, either all or 
no elements of gK have property P. Let T = [Yi,. .. .,Yr] be an incomplete partial image, 
and lety C X. Then the set P(T U [y]) 0 if and only if, for all h C Kyl- Y the set 
P(T U [yh]) = 0. 

Proof. It follows from the hypothesis that g C P(T U [y]) if and only if gh C 

P(T U [yh]). D 
One can always take K to be the trivial subgroup, but in all cases of interest- 

especially in Section 3-a nontrivial subgroup K is known. We totally order X so 
that xI,... ,xk are the first k points. There is an induced (lexicographical) order on 
each of G, BG, and the set of partial images. Proposition 2 simply says that only the 
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first point of each KYl ,V-orbit has to be considered when extending T. In the cases 
discussed here, this restriction is used when K= Kyl y otherwise the orbits of a 
quickly-computed approximation to Kyl y are used, in order to avoid a time- 
consuming change of base for K from B to IY. II. .Yr, . . .] 

We present the general algorithm for finding an element g with property P and 
then discuss the case of testing conjugacy of elements. 

ALGORITHM BKTKS 
BKTKS 1: [initialize with null sequence] 

r --0, T --[ ]. 
BKTKS 2: [next level down] 

r -- r + 1. 
if r > k then go to (5). 

Yr --Xp(T)- 

BKTKS 3: [next partial image] 
if Yr = 0 then go to (4). 

Yr- first point of Yr, T - [yl...Yr]. 

go to (2). 
BKTKS 4: [backtrack] 

r<-r- 1. 
if r = 0 then stop (no element with property P exists). 
Yr --Yr \ yrls 1, r- IlT <-- yl,..yr-I] 
go to (3). 

BKTKS 5: [image is complete] 
let g be the unique element of G(T). 
if g has property P then stop else go to (4). 

In testing conjugacy of g, and g2 in G we search for an element with the property 
P: "g conjugates g, to g2'". 

In this case K is any subgroup of CG(g2), for example Kg2). The base is chosen to be 
compatible (in the sense of [13]) with the action of g, so that xr = Xrg- I as often as 
possible. Then, for an incomplete partial image T = [yl, Y2, . .Yr- J] we can take 

( XG(T) n 
{y,i1}, if xy=rx,L 1,and 

y E {y 192>1=IX< otherwise, 

since a conjugating element maps cycles of g, to cycles of g2. 
This approach restricts the number of complete images considered, particularly 

for elements with large cycles. Our experience while using the algorithm as part of a 
method to determine the conjugacy classes of a permutation group (cf. Table V) 
indicates that using K = CG(g2) instead of K = {identity} often leads to a 30-50% 
reduction in time. We found the algorithm to be very efficient. 

3. Subgroup Construction. In the case where the elements with property P form a 
subgroup H, the previous algorithm can be modified to find generators of H(k), then 
generators of H(k- 1), and so on. In this way a strong generating set of H relative to 
B is computed. Suppose H(s+ 1) < K < H(s). Then, in searching for generators of 
H(s), we clearly have to consider only one element from each right and left coset of 
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K. The following result therefore justifies discarding points in steps 2 and 4 of 
algorithm BKTK described below. 

PROPOSITION 1. (i) (Sims [13]). An element g is the first element of Kg if and only if, 
for each i, 1 < i < k, xg s yg for every y in the KX .x _-orbit of xi. 

(ii) Let yi = xg for i 1,2,.. ., k. Then g is the first element of gK if and only if, for 
each i, 1 < i k, yi is first in the Kyl ,,-orbit of y1. 

Proof. The results follow from the one-to-one correspondence of Kg with B1Kg and 
of gKwith (Bg)K, and the fact that x1, ... ,Xk are the first points of X. 

(i) Suppose there exists an integer i < k and a pointy E KX, _ ,-orbit of xi such 
that yg < xg. Let h E K , mapping xi to y. Then x9 = xJ, for j < i, and 
Xhg = yg < xg. Hence hg < g, and g is not first in Kg. Conversely, suppose that g is 
not first in Kg. Let h E K such that hg < g. If xhg = xg for i = 1,...,k, then 
hg = g. Hence, let i be the first integer for which xhg < xg. Then h E K x and, 
if y x h, thenyg < xF. 

(ii) Suppose there exists i s k and y E KY , ,--orbit of y, such that y < y, Let 
h E Kyl y l such thatyh hy. - 

=Y, forj < i, and xgh =yh =y <yl 
= xg. Hence gh < g, and g is not first in gK. Conversely, suppose that h E K and 
gh < g. Let i be the first integer such that Xgh < xg. Then h E KY and y'h < Y. 

A corollary of Proposition 1 (ii) is that once a generator g extending K has been 
found then no other generator of H(s) mapping x5 to xg is required. Hence the value 
of r is set to s + 1 in step BKTK 5 after a generator has been found. 

In algorithm BKTK the sequence T= [y1, ... y,Y]; the integer s is the largest 
integer for which y, = xl for all i < s; K is the subgroup of H already computed, 
H(s+ 1) < K < H(s); and S is a strong generating set of K relative to B. On 
termination K = H. If L is a known subgroup of H, then L is used in step BKTK 6 
to improve the computation. 

ALGORITHM BKTK 
BKTK 1: [initialize] 

K -{identity}, S-- 0, T -B. 
for r = 1, 2,. .. .k, Yr <-XA(x15... 

* 
sX'-I 

s <- k, r <-s + 1. 

BKTK 2: [T and its descendants have been considered, so backtrack] 
r -- r - 1. 
if r < s then go to (6). 
Yr --Yr \Y;K.r 

-v i,T<-- [y1, ..Yr- 
BKTK 3: [consider next yr] 

if Yr = 0 then go to (2). 

Yr --first point of Yr 5 T --[ Y l, .. 5Yr ] 
BKTK 4: [consider descendants of T] 

r - r + 1. 
if r > k then go to (5). 

Yr Xp(T) \ {y E X I there exists j < r such that xr E XK(J and 
Y <yJ}. 
go to (3). 
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BKTK 5: [image is complete] 
let g be the unique element of G(T). 
if g does not have property P then go to (2). 
S - S U {g}, K (S), r - s + 1. 
go to (2). 

BKTK 6: [K = H(S). Construct H(s- )] 
s -- s - 1. 

if s 0 O then stop. 
S - S U {generators of L which fix x1,...,xs_l} . 
K -(S). 
r - s + 1. 
go to (2). 

4. Implementation. For a permutation group G the implementation is straightfor- 
ward. Subsets of X are represented as bit strings and an element g of G(T) is stored 
to facilitate the computation of XG(T). The storage requirements over and above 
those necessary to frame the problem are k bit strings for the Y, an additional bit 
string for the orbit in step BKTK 2, one element, and the storage requirements of 
the group K. 

For a matrix group G a different approach is used. The sequence T and the 
subsets Yr of X are implicit. The information they contain is interpreted in terms of 
coset representatives in the basic transversals of G and explicitly stored as such. The 
sequence T of points is replaced by a sequence I [i1,... 5ir] of integers, where 

Urlr .r 1r l . . u1, E G(T) and Uj11 is the ijth element of the jth basic transversal 

U.. The set Y, is replaced by a subset W, of { 1, 2, ... I U, 11}, where the image of x, 
under urlr . . U. runs over Yr as ir runs over Wr. The set Wr is stored as a bit string 
relative to { 1, 2,. .., I Ur II} Each of the products uU . U , U,,1,, forj = 1, ... r, 
is explicitly stored as an element in order to facilitate the computation of an element 
g E G(T) as T varies. The storage requirements are 2k bit strings (one for Wr and 
one for workspace at level r), k elements, the storage requirements of K, and a hash 
list of vectors for the orbit in step BKTK 2. 

The specific algorithms which are based on the backtrack algorithm are imple- 
mented by supplying three additional routines for use by the general routine. 

(1) A routine to select an appropriate base and to set up any information needed 
in the computation of Xp(T). 

(2) A routine to compute Xp(T). 
(3) A routine to test whether an element of G has property P. 
An appropriate base as presented in the theoretical exposition of a specific 

algorithm may be quite long. However, it is always possible to implement the 
algorithm so that redundant levels of the base are not explicitly stored, thus making 
the actual length of the base manageable. Moreover, for permutation groups it is 
always possible to conjugate the setting of the problem in the symmetric group so 
that the appropriate base is [ 1, 2, ... , k]. Hence the natural order on X can be used. 

The algorithms have been implemented using the dynamic storage manager 
STACKHANDLER [6] and they form part of CAYLEY [5]. 
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5. Specific Cases of the Backtrack Algorithm. It is now a simple matter to describe 
a given backtrack algorithm by specifying (a) the property P, (b) the choice of base 
B, (c) the choice of L in step BKTK 6 and the approximation to Ky- - l in step 
BKTK 2 when r > s (note that r = s implies K = Kyl y ,), (d) Xp(T), and (e) any 
features of the implementation. 

(5.1) Intersection. 
(a) P: "g is in G and M". 
(b) G and M have the same base B. 
(c) L = {identity} and Ks E Sj s fixes yl,. . .- -1) is the approximation to 

Kyl ,. - .,Yr- I' 
(d) Xp(T) = XG(T) n Xm(T). 
Our experience indicates that the algorithm is very efficient on average. However, 

Hoffman [7] shows it has worst case behavior which is exponential in the degree. 
(5.2) Set stabilizer. 
(a) P: "g stabilizes {Zi,... Zm} . 

(b) B [ZI, Z2,... *Zm, . I *] 

(c) L GZI Z2 Z and <s E S I s fixesyl,... y 1) is the approximation to KY, - ,. 
(d) Xp(T) = XG(T) n {zl,. . ,Zm}. 
(e) As Gz, z < H the backtrack algorithm searches the images of [z,..., Zm] 

rather than the images of B. That is, k = m and not the length of the base. 
Our experience indicates that the algorithm is slow for large sets with small 

stabilizer. In general its application is restricted to the case where m s 6. The 
algorithm has not been implemented for matrix groups. 

(5.3) Centralizer of an element. 
(a) P: "g conjugatesf tof ". 
(b) B is compatible with the cycles of f. 
(c) L = {identity} and the trivial group is the approximation to K , 
(d) 

(T) -f|XG(T) n {Y/L}' if x=x xf1, and 

{y E XG(T) y Iy<f)I=I xM<) j}, otherwise. 

(e) For permutation groups the set {y E Xi y<f)> x <)>I} for each suitable 
value of r, is stored as a bit string throughout the computation. For matrix groups 
the size of these sets is prohibitive and they are not stored. If I= [i..... i-11] 
g =rJru i r-2i * and x7ir2= {v1, v2,. . . }, then 

{ {iv= xrgfg}, if xx = xf,and 

b {i l v1 is in a cycle of gfg- of length x<f> } otherwise. 

There are further differences. The longest cycles of f are chosen to form the base if G 
is a permutation group. If G is a matrix group then the choice of cycles for the base 
is made from those cycles which contain a point of the existing base, and preference 
is given to cycles of subspaces in an attempt to minimize I . Our experience 
indicates that the algorithm is very efficient. 
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(5.4) Centralizer of a subgroup. 
(a) P: "g centralizes F ". 
(b) B is compatible with the orbits of F. That is, {xl, x2,... ,xi}, {xi+, 

xi+2,. .. },. . . are orbits of F. 
(c) as in (5.3). 
(d) 

FXcT ) {xT f } if some E F maps x- I to x, 
Xp(T) {y E XG(T) I IyFI=IX FI and Iy<f>1= Ix<f> I 

L for each generatorf of F), otherwise. 

(e) The elements fr are determined at the outset (from the Schreier vector of the 
F-orbit) and stored as words in the generators of F. For permutation groups the set 
{y E Xl IyFj= xFI and Iy<fl=l x<f> I for each generatorf of F}, for each suitable 
value of r, is stored as a bit string throughout the computation. For matrix groups 
the first condition IyF =F XFI is not used (as orbits are relatively expensive to 
compute) and the sets are determined as in (5.3). The actual choice of the base is 
analogous to (5.3). Our experience indicates that the algorithm is very efficient. 

6. Conclusion. The performance of the implementations of the specific algorithms 
is given in the appendix. There are two factors which particularly affect the 
efficiency. One is how closely Xp(T) approximates Xp(T), and the other is the 
length of the K-orbits. Because of the latter, computing a group H of large order 
tends to be faster than computing a group of small order. 

Although we have assumed that the matrices are over finite fields, there is in 
principle no obstacle to considering finite groups of matrices over other rings. 

APPENDIX: Tables of Performance. All times are in CDC Cyber 72 seconds. 
All runs used the implementations in CAYLEY 

TABLE I 

Set stabilizer in permutation groups 

I I Cll TOTAL TIME TO G ~~~~~~~IIm H ~ TIME CHANGE BASE 

L5(2) 210 32 5 7 31 31 3 28 32 0.98 0.18 
M24 2'0 3 3 5 7 11 * 23 24 3 27 33 5 . 7 1.01 0.17 

6 24 33 5 1.24 0.17 
12 24 3 5 157.76 0.19 

L3(13) 25 .32 7. 133 61 183 2 25 3 132 3.65 0.78 
3 25 32 3.56 1.00 
4 23 * 3 5.69 2.78 
5 2 15.98 3.51 

20 > 500 
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TABLE II 

Centralizer of an element in permutation groups 

TOTAL TIME TO 
G I X I I C I I f I | CG(f )~ I TIME CHANGE BASE 

L(3,2) 7 23 .3 . 7 2 23 0.25 0.03 
3 3 0.21 0.03 

L(3,3) 13 24 .33 *13 2 24 3 0.48 0.10 
13 13 0.36 0.10 

L(3,4) 21 26 . 32 .5 . 7 2 26 0.80 0.11 
7 7 0.52 0.12 

L(3,5) 31 25 3 5 3 3 1 2 25 3 5 0.10 0.22 
24 23 * 3 0.74 0.25 

L(3,7) 57 25 32 73 19 2 25 3 7 1.65 0.38 
19 19 1.38 0.32 

L(3,8) 73 29 32 72 .73 2 29 7 2.25 0.45 
3 32 7 2.53 0.53 

L(3,9) 91 27 36 5 -7. 13 2 27 32 5 3.15 0.72 
40 24 5 2.23 0.63 

L(3, 11) 133 24 3 52. 7 . 113 19 2 24 3 52 11 4.79 0.93 
120 23 3 5 2.61 0.78 

L(3, 13) 183 25 32 7 -133 . 61 2 25 *3 7 13 6.13 1.20 
61 61 4.14 1.17 

H - S 100 29 32 53 7 11 7 7 6.73 2.48 
2 29 3 5 5.63 1.38 

G(2,4) 416 212 33 52 7 13 3 26 33. 5 .7 14.44 2.62 
6 22 - 3 30.67 4.53 
2 28 3 5 21.43 2.71 

2F4(2) 1755 2'1. 33 * 52 . 13 2 2'1. 3 100.63 15.18 
8 24 262.33 3.14 
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TABLE III 
Centralizer of an element in matrix groups 

TOTAL TIME TO 
G dim V I fieldi1 IGC I Id ll I CG(f) I TIME CHANGE BASE 

SL(3,2) 3 2 23. 3.7 2 23 0.76 0.38 
3 3 0.39 0.08 

SL(3,3) 3 3 24 .33 13 2 24 3 1.73 0.96 
13 13 1.00 0.63 

SL(3,4) 3 4 26 .33 .5. 7 2 26 .3 3.66 1.78 
21 3 7 1.50 0.36 

SL(3,5) 3 5 2 5 *3 53 31 2 25 3 5 3.90 2.25 
24 23 * 3 2.28 1.45 

SL(3,7) 3 7 25 - 33 . 73 . 19 2 25 32 7 6.23 3.86 
19 3 19 4.08 2.30 

SL(3,8) 3 8 29 . 32 72 73 2 29 7 11.12 7.65 
3 32. 7 6.06 4.40 

SL(3,9) 3 9 27'. 36. 5 . 7 . 13 2 27 32 5 12.05 7.53 
40 24- 5 5.79 3.95 

SL(3, 11) 3 11 24. 3 . 2. i7 *113 * 19 2 24 - 3 52 . 11 14.67 8.81 
120 23 -3 * 5 6.83 4.89 

SL(3,13) 3 13 25 * 33 * 7 . 133 . 61 2 25 32. 7 . 13 23.22 14.00 
183 3 - 61 12.76 8.41 

SL(4,4) 4 4 212 34- 52.- 7 71 2 212.32.5 25.50 17.37 
4 26 20.75 14.92 

SL(4,5) 4 5 29 - 32 - 56 13 31 2 28 32.52 169.42 31.31 
124 22 31 14.11 8.03 

SL(5,3) 5 3 29- 310. 5 *112 * 13 2 28 34 13 77.64 57.77 
39 2 3 - 13 9.68 6.69 

Sp(6,3) 6 3 2'0- 39 - 5 - 17 - 13 12 22. 32 28.51 10.18 
3 25 38 48.27 16.72 

?G2(4) 6 4 212. 33 * 527 - 13 6 22 .3 58.95 4.89 
2 28 3 - 5 85.17 6.94 

Sp(6,4) 6 4 218-34-537 .13.17 6 24.3 84.06 31.77 
2 2143 . 5 233.38 17.67 
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TABLE IV 

Centralizer of subgroup in matrix groups 

TOTAL TIME TO 
G IGI dim V I field I F FI I CG(F) I TIME CHANGE BASE 

SL(3,2) 23 3 7 3 2 G 233 . 7 1 0.83 0.39 
Sp(4,4) 28 32 52 17 4 4 3 2 3 22 3 5 3.68 0.93 

4 23 3 22 5.84 1.67 
5 23 3 5 1 1.58 0.07 

2 X > 4 24 3 22 2.78 0.05 
6 24 32 5 1 1.12 0.71 

TABLE V 

Conjugacy of elements in permutation groups 

G G X TIME 

M1O 24 32 5 10 0.15 
M,, 1 224.32.5.11 11 0.25 
- 29 34 12 0.31 
- 2'? 16 0.38 

M22 27 32 5 7. 11 22 0.36 
M24 2'0 33 5 7 11 23 24 0.80 
Sz(8) 26 .5 7. 13 65 0.65 
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